Components of ice nucleation structures of bacteria.

نویسندگان

  • M A Turner
  • F Arellano
  • L M Kozloff
چکیده

Nonprotein components attached to the known protein product of the inaZ gene of Pseudomonas syringae have been identified and shown to be necessary for the most efficient ice nucleation of supercooled H2O. Previous studies have shown that cultures of Ina+ bacteria have cells with three major classes of ice-nucleating structures with readily differentiated activities. Further, some cells in the culture have nucleating activities intermediate between those of the different classes and presumably have structures that are biosynthetic intermediates between those of the different classes. Since these structures cannot be readily isolated and analyzed, their components have been identified by the use of specific enzymes or chemical probes, by direct incorporation of labeled precursors, and by stimulation of the formation of specific classes of freezing structures by selective additions to the growth medium. From these preliminary studies it appears that the most active ice nucleation structure (class A) contains the ice nucleation protein linked to phosphatidylinositol and mannose, probably as a complex mannan, and possibly glucosamine. These nonprotein components are characteristic of those used to anchor external proteins to cell membranes of eucaryotic cells and suggest that a similar but not identical anchoring mechanism is required for efficient ice nucleation structure. The class B structure has been found to contain protein presumably linked to the mannan and glucosamine moieties but definitely not to the phosphatidylinositol. The class C structure, which has the poorest ice nucleation activity, appears to be the ice nucleation protein linked to a few mannose residues and to be partially imbedded in the outer cell membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Ice Nucleation Activity (INA) and INA Gene Detection in the Bacteria Isolated from Pistachio Trees in Kerman Province, Iran

IIce nucleation active (INA) bacteria are common epiphytic inhabitants that cause frost damage in many plants in the near-zero temperatures. Yet, no studies were found in ice nucleation bacteria associated with pistachio trees. In our earlier study some INA strains were identified and reported. These were assigned as Pseudomonas fragi, P. putida, P. moraviensis and<em...

متن کامل

Production of Ice Nucleation Deficient (Ice-) Mutants of the Epiphytic Strains of Erwinia herbicola

To mutate the Ice Nucleation Active (INA) gene in Erwinia herbicola strains, Tn-5 transposon carried by Psup2021 plasmid was used. This plasmid was transferred to the bacterial cells by electroporation. Electrotransformation was carried out for 2.5 ms at 1800 v and 1 mm distance between the electrodes. Polymerase chain reaction was used for determination of presence or loss of INA gene, using a...

متن کامل

Ice nucleation temperature of individual leaves in relation to population sizes of ice nucleation active bacteria and frost injury.

Ice nucleation temperatures of individual leaves were determined by a tube nucleation test. With this assay, a direct quantitative relationship was obtained between the temperatures at which ice nucleation occurred on individual oat (Avena sativa L.) leaves and the population sizes of ice nucleation active (INA) bacteria present on those leaves. In the absence of INA bacteria, nucleation of sup...

متن کامل

Bacterial ice nucleation: a factor in frost injury to plants.

Heterogeneous ice nuclei are necessary, and the common epiphytic ice nucleation active (INA) bacteria Pseudomonas syringae van Hall and Erwinia herbicola (Löhnis) Dye are sufficient to incite frost injury to sensitive plants at -5 degrees C. The ice nucleation activity of the bacteria occurs at the same temperatures at which frost injury to sensitive plants occurs in nature. Bacterial ice nucle...

متن کامل

Heterogeneous ice nucleation on biological particles: Bacteria and pollen

In the atmosphere the importance of biological ice nuclei is still not well understood. Therefore we investigated the ice nucleation behavior of Snomax, used as a model for bacterial ice nucleation, and birch pollen washing water, used as a model for pollen induced ice nucleation. Thereby we quantified the ice nucleation behavior of the INA protein complexes controlling the ice nucleation abili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 173 20  شماره 

صفحات  -

تاریخ انتشار 1991